Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 87(7): 294-309, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38279841

RESUMO

Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.


Assuntos
Antioxidantes , Benzodioxóis , Dano ao DNA , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Células MCF-7 , Apoptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular , RNA Mensageiro , Linhagem Celular Tumoral
2.
Toxicol In Vitro ; 85: 105474, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122806

RESUMO

Zerumbone (ZER) is a phytochemical with antioxidant and antiproliferative properties. This study evaluated the cytoxicity of ZER combined with chemotherapeutic agents and the expression of mRNA genes related to cell cycle, cell death, xenobiotic metabolism, DNA damage, and endoplasmic reticulum (ER) stress in HepG2/C3A cells. ZER was cytotoxic (IC50, 44.31 µM). ZER-induced apoptosis was related to BBC3 and ERN1 upregulation (ER stress), and its antiproliferative effects were attributable to MYC, IGF1, and NF-kB mRNA inhibition. ZER-induced G2/M arrest and DNA damage was associated with mRNA expression of cell cycle (CDKN1A) and DNA damage (GADD45A) genes. Increased CYP1A2 and CYP2C19 mRNA expression suggested ZER metabolization, and reduced CYP1A1 and CYP2D6 expression indicated a longer time of action of ZER in the cell, enhancing its pharmacological effect. ZER downregulated TP53, PARP1, BIRC5 (apoptosis), and MAP1LC3A (autophagy). In apoptosis assay, the data of the association treatments with ZER suggested antagonism. In cytotoxicity assay, the data of the association treatments with ZER suggested synergism action to cisplatin and antagonism action to doxorubicin and 5-fluorouracil. Thus, ZER has potential for application in chemotherapy as it modulates mRNA targets; however, it may not have the desired efficiency when combined with other chemotherapeutic agents.


Assuntos
Antineoplásicos , Sesquiterpenos , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Cisplatino/farmacologia , Antioxidantes/farmacologia , NF-kappa B , Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP1A1 , Xenobióticos/farmacologia , Sesquiterpenos/farmacologia , Apoptose , Dano ao DNA , Antineoplásicos/farmacologia , Compostos Fitoquímicos/farmacologia , RNA Mensageiro , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Linhagem Celular Tumoral
3.
J Toxicol Environ Health A ; 85(21): 896-911, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950849

RESUMO

Fluopsin C is an antibiotic compound derived from secondary metabolism of different microorganisms, which possesses antitumor, antibacterial, and antifungal activity. Related to fluopsin C antiproliferative activity, the aim of this study was to examine the following parameters: cytotoxicity, genotoxicity, cell cycle arrest, cell death induction (apoptosis), mitochondrial membrane potential (MMP), colony formation, and mRNA expression of genes involved in adaptive stress responses and cellular death utilizing a monolayer. In addition, a three-dimensional cell culture was used to evaluate the effects on growth of tumor spheroids. Fluopsin C was cytotoxic (1) producing cell division arrest in the G1 phase, (2) elevating expression of mRNA of the CDKN1A gene and (3) decrease in expression of mRNA H2AFX gene. Further, fluopsin C enhanced DNA damage as evidenced by increased expression of mRNA of GADD45A and GPX1 genes, indicating that reactive oxygen species (ROS) may be involved in the observed genotoxic response. Reticulum stress was also detected as noted from activation of the ribonuclease inositol-requiring protein 1 (IRE1) pathway, since a rise in mRNA expression of the ERN1 and TRAF2 genes was observed. During the cell death process, an increase in mRNA expression of the BBC3 gene was noted, indicating participation of this antibiotic in oncotic (ischemic) cell death. Data thus demonstrated for the first time that fluopsin C interferes with the volume of tumor spheroids, in order to attenuate their growth. Our findings show that fluopsin C modulates essential molecular processes in response to stress and cell death.


Assuntos
Apoptose , Dano ao DNA , Antibacterianos/farmacologia , Morte Celular , Humanos , Hidroxilaminas , Células MCF-7 , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Chem Biol Interact ; 338: 109410, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582110

RESUMO

Curcumin (Cur), is a pigment with antiproliferative activity but has some pharmacokinetic limitations, which led researchers to look for more effective structure analogs. This work investigated the effects of Cur and compared them with the two analogs, demethoxycurcumin (DeMC) and dimethoxycurcumin (DiMC), to elucidate their mechanisms of action. The cytotoxic, antiproliferative, and genotoxic effects these compounds were correlated based on gene expression analysis in the human renal adenocarcinoma cells (786-O). Cur decreased CYP2D6 expression and exhibited cytotoxic effects, such as inducing monopolar spindle formation and mitotic arrest mediated by the increase in CDKN1A (p21) mRNA. This dysregulation induced cell death through a caspase-independent pathway but was mediated by decrease in MTOR and BCL2 mRNA expression, suggesting that apoptosis occurred by autophagy. DeMC and DiMC had similar effects in that they induced monopolar spindle and mitotic arrest, were genotoxic, and activated GADD45A, an important molecule in repair mechanisms, and CDKN1A. However, the induction of apoptosis by DeMC was delayed and regulated by the decrease of antiapoptotic mRNA BCL.XL and subsequent activation of caspase 9 and caspase 3/7. DiMC treatment increased the expression of CYP1A2, CYP2C19, and CYP3A4 and exhibited higher cytotoxicity compared with other compounds. It induced apoptosis by increasing mRNA expression of BBC3, MYC, and CASP7 and activation of caspase 9 and caspase 3/7. These data revealed that different gene regulation processes are involved in cell death induced by Cur, DeMC, and DiMC. All three can be considered as promising chemotherapy candidates, with DiMC showing the greatest potency.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/farmacologia , Diarileptanoides/farmacologia , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Curcumina/química , Diarileptanoides/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
5.
Appl. cancer res ; 40: 1-13, Oct. 19, 2020. ilus
Artigo em Inglês | LILACS, Inca | ID: biblio-1283485

RESUMO

Background: Cell culture (spheroid and 2D monolayer cultures) is an essential tool in drug discovery. Piperlongumine (PLN), a naturally occurring alkaloid present in the long pepper (Piper longum), has been implicated in the regulation of GSTP1 activity. In vitro treatment of cancer cells with PLN increases ROS (reactive oxygen species) levels and induces cell death, but its molecular mode of action has not been entirely elucidated. Methods: In this study, we correlated the antiproliferative effects (2D and 3D cultures) of PLN (CAS 20069­09-4, Sigma-Aldrich) with morphological and molecular analyses in HepG2/C3A cell line. We performed assays for cytotoxicity (MTT), comet assays for genotoxicity, induction of apoptosis, analysis of the cell cycle phase, and analysis of the membrane integrity by flow cytometry. Relative expression of mRNA of genes related to proliferation, apoptosis, cell cycle control, metabolism of xenobiotics, and reticulum endoplasmic stress. Results: PLN reduced the cell proliferation by the cell cycle arrest in G2/M. Changes in the mRNA expression for CDKN1A (4.9x) and CCNA2 (0.5x) of cell cycle control genes were observed. Cell death occurred due to apoptosis, which may have been induced by increased expression of proapoptotic mRNAs (BAK1, 3.1x; BBC3, 2.4x), and by an increase in 9 and 3/7 active caspases. PLN induced cellular injury by ROS generation and DNA damage. DNA damage induced MDM2 signaling (3.0x) associated with the appearance of the monastral spindle in mitosis. Genes associated with ROS degradation also showed increased mRNA expression (GSR, 2.0x; SOD1, 2.1x). PLN induce endoplasmic reticulum stress with the increase in the mRNA expression of ERN1 (4.5x) and HSPA14 (2.2x). The xenobiotic metabolism showed increased mRNA expression for CYP1A2 (2.2x) and CYP3A4 (3.4x). In addition to 2D culture, PLN treatment also inhibited the growth of 3D culture (spheroids). Conclusion: Thus, the findings of our study show that several gene expression biomarkers (mRNAs) and monastral spindle formation indicated the many pathways of damage induced by PLN treatment that contributes to its antiproliferative effects


Assuntos
Humanos , RNA Mensageiro/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Dioxolanos/farmacologia , Antineoplásicos/farmacologia , Biomarcadores/análise , Expressão Gênica/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos
6.
Environ Toxicol Pharmacol ; 75: 103328, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32000057

RESUMO

Studies that evaluated the mechanisms of action of Plumbagin (PLB) and its toxicity may contribute to future therapeutic applications of this compound. We investigate biomarker important in the mechanisms of action correlate the expression of mRNA with the cytotoxic and genotoxic effects of PLB on HepG2/C3A. In the analysis of cytotoxicity, PLB decreased cell viability and membrane integrity at concentrations ≥ 15µM. Xenobiotic-metabolizing system showed strong mRNA induction of CYP1A1, CYP1A2, and CYP3A4, suggesting extensive metabolization. PLB induced apoptosis and an increase in the mRNA expression of genes BBC3, CASP3, and CASP8. At a concentration of 15µM, there was a reduction in the expression of PARP1 mRNA and an increase in the expression of BECN1 mRNA, suggesting that PLB may also induce cell death by autophagy. PLB induced an arrest at the G2/M phase due to DNA damage, as observed in the comet assay. This damage is associated with the increased mRNA expression of genes p21, GADD45A, and H2AFX and with changes in the expression of proteins H2AX, p21, p53, Chk1, and Chk2. These results allow a better understanding of the cellular action of PLB and of its toxicity, thereby contributing to the development of PLB-based drugs, with markers of mRNA expression possibly playing a role as indicators for monitoring toxicity in human cells.


Assuntos
Antinematódeos/toxicidade , Naftoquinonas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Regulação para Baixo , Células Hep G2 , Humanos , RNA Mensageiro
7.
Toxicol In Vitro ; 61: 104643, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31513842

RESUMO

Dimethoxycurcumin (DiMC), a synthetic analog of curcumin, was shown to have antiproliferative activity in human tumor cell lines. Therefore, we investigated its cytotoxic, antiproliferative, genotoxic, and apoptotic effect and correlated these evaluations with the expression of transcripts and proteins in the human hepatocellular carcinoma cell line (HepG2/C3A). Treatment with DiMC resulted in increased CYP2E1, CYP2C19 and CYP1A2 transcripts levels and was cytotoxic (≥10 µM). DiMC caused mitotic arrest by inducing monopolar spindle formation and was genotoxic increasing expression of the CDKN1A, GADD45A and PARP1 gene, key effectors in the cell cycle arrest and DNA repair pathways, respectively. This genotoxicity was caused by generation of reactive oxygen species and reduction of antioxidant proteins levels. Furthermore, we observed a decrease in important proteins involved in DNA repair. In addition to the observed apoptotic morphology and the presence of annexin labeling, we observed increased expression of BAK1 and CASP7 genes and caspase 3/7 protein activity, showing that these effects caused apoptosis through the intrinsic pathway in HepG2/C3A cells. Our results indicate that DiMC modulates important molecular targets leading to cell death even in metabolic competent cells models has considerable potential in anticancer therapy.


Assuntos
Antineoplásicos/toxicidade , Curcumina/análogos & derivados , Dano ao DNA , Mutagênicos/toxicidade , Fuso Acromático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcumina/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos
8.
Mol Biol Rep ; 46(6): 6071-6078, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31456160

RESUMO

Plumbagin (PLB) is a phytochemical being used for centuries in traditional medicines. Recently, its capacity to inhibit the development of human tumors has been observed, through the induction of apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Here we evaluated the mechanism of action of PLB in the kidney adenocarcinoma 786-O cell line, which are metabolizing cells important for toxicology studies. After the treatment with PLB, we observed increased apoptosis and cell cycle arrest in S and G2/M phases, starting at 5 µM. In addition, PLB was cytotoxic, genotoxic and induced loss of cell membrane integrity. Regarding gene expression, treatment with 7.5 µM PLB reduced the amount of MTOR, BCL2 and ATM transcripts, and increased CDKN1A (p21) transcripts. Phosphorylation levels of yH2AX was increased and MDM2 protein level was reduced following the treatment with PLB, demonstrating its genotoxic effect. Our results suggest that PLB acts in molecular pathways related to the control of proliferation and cell death in 786-O cells.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Naftoquinonas/farmacologia , Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Renais/metabolismo , Naftoquinonas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Adv Exp Med Biol ; 1147: 137-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147876

RESUMO

In amyotrophic lateral sclerosis (ALS), motor neurons die selectively. Therefore, initial symptoms that include fasciculation, spasticity, muscle atrophy, and weakness emerge following axons retraction and consequent muscles' denervation. Patients lose the ability to talk and swallow and rely on parenteral nutrition and assisted ventilation to survive. The degeneration caused by ALS is progressive and irreversible. In addition to the autonomous mechanism of neuronal cell death, non-autonomous mechanisms have been proved to be toxic for motor neurons, such as the activation of astrocytes and microglia. Among the cells being studied to unveil these toxic mechanisms are pericytes, cells that help keep the integrity of the blood-brain barrier and blood-spinal cord barrier. In this chapter, we aim to discuss the role of pericytes in ALS.


Assuntos
Esclerose Amiotrófica Lateral , Pericitos , Animais , Axônios , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Neurônios Motores , Superóxido Dismutase
10.
J Trace Elem Med Biol ; 50: 209-215, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262281

RESUMO

Oxidative stress (OS) is involved in the onset of various pathological processes, and sodium selenite (Na2SeO3) is known to have antioxidant activity. This study evaluated the cellular response of human HepG2/C3A cells supplemented with Na2SeO3 when exposed to hydrogen peroxide (H2O2)-induced OS. We analyzed cytotoxicity, cell proliferation, and genotoxicity in comparison with molecular data of mRNA and protein expression. The MTT and comet assays revealed that Na2SeO3 conferred cytoprotective and anti-genotoxic effects. In contrast, RTCA (Real-Time Cell Analysis) and flow cytometry analysis revealed that Na2SeO3 did not inhibit H2O2-induced anti-proliferative effects or cell cycle arrest (G2/M). Cells exposed simultaneously to Na2SeO3 and H2O2 showed overexpression of GPX1 mRNA, indicating that Na2SeO3 influenced the cellular antioxidant system. Furthermore, downregulation of CAT mRNA and SOD1 and PRX2 proteins induced by H2O2, was minimal after the Na2SeO3+H2O2 treatment. Although normalization of CCN2B mRNA expression by Na2SeO3 was observed after the Na2SeO3+H2O2 treatment, this was not observed for other genes such as CDKN1A, CDKN1C, and CDKN2B, which are related to cell cycle control, nor for GADD45A, which is involved in the cellular response to DNA damage. Furthermore, both CDKN1B and CDKN1C expression were downregulated in HepG2/C3A cells treated with Na2SeO3 only. Our results indicate that cellular response to Na2SeO3 involved the modulation of the antioxidant system. Na2SeO3 was unable completely recover HepG2/C3A cells from H2O2-induced oxidative damage, as evidenced by analysis of cell proliferation kinetics, cell cycle assay, and expression of key genes involved in cell cycle progression and response to DNA damage.


Assuntos
Peróxido de Hidrogênio/farmacologia , Selenito de Sódio/farmacologia , Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos
11.
Eur J Hum Genet ; 25(12): 1388-1396, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29255177

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder, caused by mutations in the dystrophin gene, affecting 1:3500-5000 boys worldwide. The lack of dystrophin induces degeneration of muscle cells and elicits an immune response characterized by an intensive secretion of pro-inflammatory cytokines. Immunoglobulins modulate the inflammatory response through several mechanisms and have been widely used as an adjuvant therapy for autoimmune diseases. Here we evaluated the effect of immunoglobulin G (IG) injected intraperitoneally in a severely affected double knockout (dko) mouse model for Duchenne muscular dystrophy. The IG dko treated mice were compared regarding activity rates, survival and histopathology with a control untreated group. Additionally, dendritic cells and naïve lymphocytes from these two groups and WT mice were obtained to study in vitro the role of the immune system associated to DMD pathophysiology. We show that IG therapy significantly enhances activity rate and lifespan of dko mice. It diminishes muscle tissue inflammation by decreasing the expression of costimulatory molecules MHC, CD86 and CD40 and reducing Th1-related cytokines IFN-γ, IL-1ß and TNF-α release. IG therapy dampens the effector immune responses supporting the hypothesis according to which the immune response accelerates DMD progression. As IG therapy is already approved by FDA for treating autoimmune disorders, with less side-effects than currently used glucocorticoids, our results may open a new therapeutic option aiming to improve life quality and lifespan of DMD patients.


Assuntos
Imunoglobulina G/uso terapêutico , Imunoterapia/métodos , Distrofia Muscular de Duchenne/terapia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Distrofina/genética , Humanos , Imunoglobulina G/administração & dosagem , Injeções Intraperitoneais , Longevidade , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Fenótipo , Utrofina/genética
12.
Stem Cell Rev Rep ; 13(5): 686-698, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28710685

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron disease causing a progressive, rapid and irreversible degeneration of motor neurons in the cortex, brain stem and spinal cord. No effective treatment is available and cell therapy clinical trials are currently being tested in ALS affected patients. It is well known that in ALS patients, approximately 50% of pericytes from the spinal cord barrier are lost. In the central nervous system, pericytes act in the formation and maintenance of the blood-brain barrier, a natural defense that slows the progression of symptoms in neurodegenerative diseases. Here we evaluated, for the first time, the therapeutic effect of human pericytes in vivo in SOD1 mice and in vitro in motor neurons and other neuronal cells derived from one ALS patient. Pericytes and mesenchymal stromal cells (MSCs) were derived from the same adipose tissue sample and were administered to SOD1 mice intraperitoneally. The effect of the two treatments was compared. Treatment with pericytes extended significantly animals survival in SOD1 males, but not in females that usually have a milder phenotype with higher survival rates. No significant differences were observed in the survival of mice treated with MSCs. Gene expression analysis in brain and spinal cord of end-stage animals showed that treatment with pericytes can stimulate the host antioxidant system. Additionally, pericytes induced the expression of SOD1 and CAT in motor neurons and other neuronal cells derived from one ALS patient carrying a mutation in FUS. Overall, treatment with pericytes was more effective than treatment with MSCs. Our results encourage further investigations and suggest that pericytes may be a good option for ALS treatment in the future. Graphical Abstract ᅟ.


Assuntos
Esclerose Amiotrófica Lateral/terapia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Pericitos/transplante , Superóxido Dismutase-1/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/mortalidade , Esclerose Amiotrófica Lateral/patologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Catalase/genética , Catalase/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , Pericitos/citologia , Pericitos/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/deficiência , Análise de Sobrevida
13.
Cytotechnology ; 68(4): 1161-70, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25894792

RESUMO

Aspidospermine is an indole alkaloid with biological properties associated with combating parasites included in the genera Plasmodium, Leishmania and Trypanossoma. The present study evaluated the cytotoxicity (resazurin test), genotoxicity (comet assay) and mechanism of action (gene expression analysis via qRT-PCR) of this alkaloid in human HepG2 cells. The results demonstrated that treatment with aspidospermine was both cytotoxic (starting at 75 µM) and genotoxic (starting at 50 µM). There was no significant modulation of the expression of the following genes: GSTP1 and GPX1 (xenobiotic metabolism); CAT (oxidative stress); TP53 and CCNA2 (cell cycle); HSPA5, ERN1, EIF2AK3 and TRAF2 (endoplasmic reticulum stress); CASP8, CASP9, CASP3, CASP7, BCL-2, BCL-XL BAX and BAX (apoptosis); and PCBP4, ERCC4, OGG1, RAD21 and MLH1 (DNA repair). At a concentration of 50 µM (non-cytotoxic, but genotoxic), there was a significant increase in the expression of CYP1A1 (xenobiotic metabolism) and APC (cell cycle), and at a concentration of 100 µM, a significant increase in the expression of CYP1A1 (xenobiotic metabolism), GADD153 (endoplasmic reticulum stress) and SOD (oxidative stress) was detected, with repression of the expression of GR (xenobiotic metabolism and oxidative stress). The results of treatment with aspidospermine at a 100 µM concentration (the dose indicated in the literature to achieve 89 % reduction of the growth of L. amazonensis) suggest that increased oxidative stress and an unfolded protein response (UPR) occurred in HepG2 cells. For the therapeutic use of aspidospermine (antiparasitic), chemical alteration of the molecule to achieve a lower cytotoxicity/genotoxicity in host cells is recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...